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Abstract

Geometric branch-and-bound algorithms are well-known solution techniques in de-
terministic global optimization. To keep the use of these solution methods as simple
as possible, we suggest an easy-to-use JavaScript tool which includes the branch-and-
bound algorithm and an interval arithmetic package. Hence, one only has to implement
the objective function and the calculation of the lower bounds if one wants to solve a
suitable continuous optimization problem. The present work provides an extensive doc-
umentation on how to use the code as well as several example problems for instance
from the field of location theory which were solved by the use of the JavaScript tool.
The suggested code as well as all examples given in this work can be downloaded from
our homepage mentioned at the end of the introduction.

Keywords: deterministic global optimization, geometric branch-and-bound, location theory,
continuous optimization, JavaScript tool.

1 Introduction

In deterministic global optimization one wants to find the global minima of some real-
valued functions. Many new theoretical and computational contributions to deterministic
global optimization have been developed in the last decades and geometric branch-and-
bound methods arose to a commonly used solution technique, in particular if one deals
with a few number of continuous variables.

The main task throughout all geometric branch-and-bound algorithms is to calculate lower
bounds on the continuous objective function and several methods to do so can be found in
the literature: Some general techniques can be found in Horst and Tuy (1996), Horst et al.
(2000), Hansen and Jaumard (1995), Horst and Thoai (1999), and Tuy and Horst (1988).
Constructing lower bounds by the use of interval analysis was discussed in Ratschek and
Rokne (1988), Hansen (1992), and Ratschek and Voller (1991). Moreover, some particular
algorithms for facility location problems were suggested in Hansen et al. (1985), Plas-
tria (1992), Drezner and Suzuki (2004), Drezner (2007), Blanquero and Carrizosa (2009),
Schöbel and Scholz (2010a), Tuy et al. (1995) and Tuy (1996). For a summary of all these
bounding techniques we refer to Scholz (2012a).
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Our main intension of the present work is an easy-to-use tool for the solution of global
optimization problems by the use of geometric branch-and-bound methods. To this end,
following Scholz (2012a), the algorithm was implemented in JavaScript in such a way that
one basically only has to specify the objective function and a corresponding bounding
operation. JavaScript was chosen since the code can be run on almost every modern browser
without any further software, and, furthermore, the code can be edited with any text editor.
Hence, the suggested tool can be perfectly used for education purposes.

In the following Section 2 we start with basic notations and a brief summary of the geometric
branch-and-bound algorithm. For theoretical results including a convergence theory and for
the calculation of lower bounds we refer to Scholz (2012a). Moreover, the section includes
a summary of interval analysis, i.e., a technique which provides some simple lower bounds.
The main contribution can be found in Section 3 where we give an extensive documentation
of the suggested JavaScript tool including an description of the software architecture as
well as two first example problems. Furthermore, the section includes a documentation of
the interval arithmetic package as well as the problem visualization package which are also
included in the JavaScript code. Next, the following Section 4 gives some example problems
which can be solved efficiently using the suggested JavaScript geometric branch-and-bound
tool. We remark that the JavaScript branch-and-bound tool as well as all examples given
in the present work can be downloaded from:

www.mehr-davon.de/gbb/

2 Geometric branch-and-bound methods

Following Scholz (2012a), this section summarizes the geometric branch-and-bound proto-
type algorithm which was implemented in a JavaScript tool as described in Section 3. After
some basic notations, we present the general geometric branch-and-bound technique includ-
ing some further remarks and comments. Finally, we briefly summarize interval arithmetics
which might be used to obtain required bounds throughout the algorithm.

2.1 Notations

The following notations are similar to those suggested in Schöbel and Scholz (2010b) and
Scholz (2012a).

Notation 1. A compact box with sides parallel to the axes is denoted by

X = [xL1 , x
R
1 ] × . . . × [xLn , x

R
n ] ⊂ Rn.

The diameter of a box X ⊂ Rn is

δ(X) =

√(
xR1 − xL1

)2
+ . . .+ (xRn − xLn)2

and the center of a box X ⊂ Rn is defined by

c(X) =

(
1

2
(xL1 + xR1 ), . . . ,

1

2
(xLn + xRn )

)
.
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In the following, we consider the minimization of a continuous function

f : X → R,

where we assume a box X ⊂ Rn as feasible area, i.e.,

X = [xL1 , x
R
1 ] × . . . × [xLn , x

R
n ] ⊂ Rn.

Next, we define bounding operations as follows.

Notation 2. Let X ⊂ Rn be a box and consider f : X → R. A bounding operation is a
procedure to calculate for any subbox Y ⊂ X a lower bound LB(Y ) ∈ R with

LB(Y ) ≤ f(x) for all x ∈ Y

and to specify a point r(Y ) ∈ Y .

Several general bounding operations are derived in Schöbel and Scholz (2010b) and Scholz
(2012b) and summarized in Scholz (2012a). Moreover, note that the choice of r(Y ) is often
only important for some theoretical result as discussed in the previously cited references.
If it is unclear how to specify r(Y ), a general choice is the center of Y , that is,

r(Y ) = c(Y ).

2.2 The algorithm

The general idea of all geometric branch-and-bound algorithms cited in Section 1 is the
same: Subboxes of the feasible area are bounded from below making use of a bounding
operation as defined before. If the bounds are not sharp enough, some boxes are split
into smaller ones according to a given splitting rule. This procedure repeats until the
algorithm finds an optimal solution x∗ ∈ X within an absolute accuracy of ε > 0.

To sum up, for the following geometric branch-and-bound algorithm assume an objective
function f and a feasible box X. Moreover, we need a bounding operation, a splitting rule,
and an absolute accuracy of ε > 0.
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( 1 ) Let X be a list of boxes and initialize X := {X}.

( 2 ) Apply the bounding operation to X and set UB := f(r(X)) and x∗ := r(X).

( 3 ) If X = ∅, the algorithm stops. Else set

δmax := max{δ(Y ) : Y ∈ X}.

( 4 ) Select a box Y ∈ X with δ(Y ) = δmax and split it according to a selected
splitting rule into s congruent smaller subboxes Y1 to Ys.

( 5 ) Set X = (X \ Y ) ∪ {Y1, . . . , Ys}, i.e., delete Y from X and add Y1, . . . , Ys.

( 6 ) Apply the bounding operation to Y1, . . . , Ys and set

UB = min{UB, f(r(Y1)), . . . , f(r(Ys))}.

If UB = f(r(Yk)) for a k ∈ {1, . . . , s}, set x∗ = r(Yk).

( 7 ) For all Z ∈ X , if LB(Z) + ε ≥ UB set X = X \ Z, i.e., delete Z from X .

( 8 ) Return to Step ( 3 ).

The selected box Y in Step ( 4 ) has to be split into s subboxes Y1 to Ys according to one
of the following splitting rules:

( 1 ) For boxes in small dimensions, say n ≤ 3, we suggest a split into s = 2n congruent
subboxes.

( 2 ) In higher dimensions, boxes can be bisected perpendicular to the direction of the
maximum width component in two subboxes Y1 and Y2.

For some theoretical results regarding the termination of the algorithm, we refer to Schöbel
and Scholz (2010b) and Scholz (2012a).

2.3 Interval arithmetic

The main task throughout any geometric branch-and-bound algorithm is the calculation of
the required lower bounds. Interval arithmetic is a general framework for calculations with
intervals, see, e.g., Ratschek and Rokne (1988) or Neumaier (1990), which is also a suitable
tool for the calculation of lower bounds as outlined in the textbook Hansen (1992) or in
Ratschek and Voller (1991).

Since the following JavaScript tool also includes an interval arithmetic package, this sub-
section summarizes the basic ideas of interval arithmetic for the calculation of the required
bounds as given in Scholz (2012b). Note that we assume compact intervals at all times
throughout this paper.

Notation 3. A (compact) interval X is denoted by

X = [a, b] ⊂ R
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with a ≤ b. Moreover, the left and right endpoints are denoted by XL = a and XR = b,
respectively.

Next, arithmetic operations between intervals are defined as follows.

Definition 4. Let X = [a, b] and Y = [c, d] be two intervals. Then the interval arithmetic
is given by

X ? Y := {x ? y : x ∈ X, y ∈ Y },
where ? denotes the addition, multiplication, subtraction, division, minimum, or maximum
as long as x ? y is defined for all x, y ∈ Y .

By definition, X ? Y again yields an interval which contains x ? y for all x ∈ X and y ∈ Y
and which can be computed easily. Apart from interval arithmetic also interval operations
are defined as follows.

Definition 5. Let X = [a, b] be an interval. Then the interval operation is given by

op(X) := {op(x) : x ∈ X} =

[
min
x∈X

op(x), max
x∈X

op(x)

]
,

where op : X → R denotes a continuous function such that op(X) is an interval.

Definition 6. An interval function F (X1, . . . , Xn) is an interval valued function with n
intervals as argument using interval arithmetics and interval operations as defined before.

Example 1. An interval function F (X,Y ) with two intervals X and Y as argument is

F (X,Y ) =

∣∣∣∣ X + Y

Y 2 + [1, 1]

∣∣∣∣ .
For example, we obtain

F ([0, 2], [−2, 1]) =

∣∣∣∣ [0, 2] + [−2, 1]

[−2, 1]2 + [1, 1]

∣∣∣∣ =

∣∣∣∣ [−2, 3]

[1, 5]

∣∣∣∣ =
∣∣∣[−2, 3]

∣∣∣ = [0, 3].

Definition 7. Let f(x1, . . . , xn) be a fixed representation of a real-valued function with n
real numbers as argument using arithmetics and operations such that the corresponding
interval arithmetics and interval operations are defined.

Then the natural interval extension of f(x1, . . . , xn) is given by the interval function
F (X1, . . . , Xn) where arithmetics and operations are replaced by their corresponding inter-
val arithmetics and interval operations.

Example 2. The natural interval extension of

f(x, y) = 4 · x2 +
sin(y)

x2 + 1

is given by

F (X,Y ) = [4, 4] ·X2 +
sin(Y )

X2 + [1, 1]
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where X and Y are intervals.

The natural interval extension leads to general lower bounds as required throughout the
geometric branch-and-bound algorithm. To this end, we need the following statement which
can be found in any standard textbook of interval analysis such as Ratschek and Rokne
(1988), Neumaier (1990), or Hansen (1992).

Theorem 1 (Fundamental theorem of interval analysis). Let F (X1, . . . , Xn) be the natural
interval extension of f(x1, . . . , xn). Then

f(Y1, . . . , Yn) ⊆ F (Y1, . . . , Yn)

for all intervals Yk ⊆ Xk for k = 1, . . . , n, where

f(Y1, . . . , Yn) := {f(x1, . . . , xn) : xk ∈ Yk for k = 1, . . . , n}.

Proof. See, for instance, Hansen (1992).

In other words, if we consider an optimization problem with a real-valued function f ,
then the natural interval extension F of f yields lower bounds as required throughout the
geometric branch-and-bound algorithm, see Subsection 3.5.

On the other hand, we remark the bounds obtained from the natural interval extension
might not be sharp enough to solve problems in a reasonable amount of time. For some
more sophisticated bounding operations we refer to Scholz (2012b), Schöbel and Scholz
(2010b), and Scholz (2012a).

3 Documentation of the JavaScript tool

The suggested geometric branch-and-bound method presented in Section 2 was implemented
in JavaScript including an interval arithmetic package as well as a problem visual-
ization package.

We remark that the biggest advantage of JavaScript is that it can be run on almost every
modern internet browser without any further software. Moreover, the code for the problem
formulation can be modified with any text editor. Hence, the JavaScript tool can be
perfectly used for education purposes which was our main intension throughout this work.

On the other hand, a disadvantage is the run time. Since JavaScript is a scripting language,
the code is not compiled and it needs to be interpreted at any time the code is running.
Therefore, some much more efficient implementations of the examples given in Section 4 are
possible although the JavaScript tool yields adequate results for example for medium-sized
facility location problems, see Section 4.

In this section, we first explain the use of the application in a web browser before explaining
the software architecture of the proposed JavaScript code where we distinguish between
mandatory and optional functions. Next, documentations of the interval arithmetic package
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Figure 1. Control panel of the JavaScript branch-and-bound tool for an example problem with n = 2.

and the problem visualization package are given. The section ends with an detailed example
problem making use of all the packages explained before.

3.1 The application

The JavaScript tool runs on every modern internet browser and provides a control panel
including the elements as well as a visualization of the progress of the branch-and-bound
algorithm as given in Figure 1:

( 1 ) For each variable x1 to xn, the bounds of the initial box as well as the current best-
known solution are displayed.

( 2 ) The colored regions are subboxes which may contain the optimal solution. In other
words, if some sub-intervals are not colored, they can not contain any optimal solution
(up to the absolute accuracy of ε).

( 3 ) The output text shows the best-known upper bound, the pre-defined absolute accu-
racy ε, the number of iterations while running the algorithm, and the current number
of boxes, i.e., the number of elements in X .

( 4 ) The first button is to start and pause the algorithm.

( 5 ) The second button stops and resets the algorithm. Note that the init problem

function described below is called once the button is pressed.

( 6 ) This button is to change between a slow and a fast mode. In the slow mode, the
algorithm performs two iterations every second. In the fast mode, the algorithm runs
as fast as possible.

( 7 ) The last button deactivates the colored regions. This might be useful if the current
number of boxes exceeds some limits which might leed to high rendering times.

3.2 Software architecture

Three files are needed if one wants to solve a minimization problem by the use of the
JavaScript branch-and-bound tool, see Figure 2:
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Figure 2. Software architecture of the proposed JavaScript tool.

( 1 ) index.html. This file includes the JavaScript source files and contains the canvas

element which is needed to illustrate the progress of the branch-and-bound algorithm.

( 2 ) branch-and-bound.js. This file contains the source-code of the JavaScript branch-
and-bound tool. The file can be downloaded from

www.mehr-davon.de/gbb/

and should not be edited at any time.

( 3 ) problem.js. This file contains the problem definition, i.e., the objective function as
well as some mandatory and optional parameters and functions described below.

Mandatory items

There are some mandatory items which should always be used in the index.html file, see
Figure 2 and Figure 3(a):

( 1 ) Line 4 includes the branch-and-bound tool file branch-and-bound.js.

( 2 ) Line 5 includes the problem definition file problem.js.

( 3 ) The onload statement in line 8 ensures that the branch-and-bound commences at the
time the html file is loaded.

( 4 ) The canvas element with id canvas B in line 9 is needed to illustrate the progress of
the branch-and-bound algorithm and to show the control panel as given in Figure 1.

In addition, the branch-and-bound tool requires the following mandatory variables and
functions in the problem.js file, see Figure 2 and Figure 3(b):

( 1 ) The variable dimension in line 1 defines the dimension of the problem which should
be an integer value greater than or equal to one.

( 2 ) The variable X in line 2 defines the initial box X of the problem. In the one-
dimensional case, X is an interval defined by its endpoints. In the higher dimensional
case, X is an array of intervals.
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(a) Source-code of the index.html file.

(b) Source-code of the problem.js file.

Figure 3. One-dimensional example of the JavaScript tool: The objective function f(x) = sin(x) is
minimized over the interval X = [0, 8] with an absolute accuracy of ε = 10−6.

( 3 ) The variable epsilon in line 3 defines the absolute accuracy for the branch-and-bound
algorithm.

( 4 ) The function f in line 5 defines the objective function. Note that the argument x is
an array starting with index 0 if the dimension is greater than one.

( 5 ) The function LB in line 9 specifies the lower bound for any box Y. In the one-
dimensional case, Y is an interval defined by its endpoints. In the higher dimensional
case, Y is an array of intervals.

Example 3. Figure 3 presents the source-code of the index.html and the problem.js files
for an example only using the mandatory items as summarized in Figure 2. Here, the
one-dimensional objective function

f(x) = sin(x)

is minimized over the box or interval X = [0, 8] with an absolute accuracy of ε = 10−6. The
lower bounds are calculated using the Lipschitzian bound operation as presented in Scholz
(2012a) and references therein.

The one-dimensional example problem is to minimize the function

f(x) = sin(x)

over the box or interval X = [0, 8].
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Optional items

Apart from the mandatory items, the branch-and-bound tool offers some optional features.

In the index.html file, there is only one optional item, see Figure 2:

( 1 ) The canvas element with id canvas P is needed to illustrate the problem which also
requires the function plot problem as described in the following.

In the problem.js file, one may use the following options, see Figure 2:

( 1 ) The variable split option defines the splitting rule. If split option has a value
of one, boxes are split into 2n congruent subboxes. Otherwise, boxes are bisected
perpendicular to the direction of the maximum width component.

If there is no variable split option defined, the branch-and-bound tool uses the
splitting rule as suggested in Subsection 2.2.

( 2 ) The function r may be used to define the specific point r(Y ) of the bounding operation,
see Notation 2. Note that the function should return an array if the dimension is
greater than one.

If there is no function r defined, the branch-and-bound tool uses of the center of Y .

( 3 ) The function init problem is called to initialize some problem instances before run-
ning the branch-and-bound algorithm, see Subsection 3.5.

( 4 ) Finally, the function plot problem is needed to illustrate the problem, see Example 4
and Subsection 3.4.

Example 4. We want to extend Example 3 in such a way that the objective function is
plotted using the problem visualization package described below.

To this end, the index.html file needs a second canvas element with id canvas P, see line 9
in Figure 4(a). Furthermore, the function plot problem illustrates the objective function,
see Figure 4(b). For a detailed description of the problem visualization package, we refer to
Subsection 3.4.

3.3 Interval arithmetic

As indicated in Subsection 2.3, interval arithmetic can be used for the calculation of the
required lower bounds. Therefore, the JavaScript tool also includes an interval arithmetic
package (IA).

This package contains a collection of functions which can be applied to (closed) intervals.
Note that the JavaScript code assumes a two-dimensional array as an interval. Table 1
summarizes all functions which are included in the interval arithmetic package. Further-
more, Subsection 3.5 explains exemplarily how to use the package for the calculation of
some lower bounds.

10



(a) Source-code of the index.html file.

(b) Source-code of the problem.js file.

Figure 4. Extension of Example 3 to include a visualization of the objective function f(x) = sin(x).
Apart from the additional line 9, the index.html is the similar to the one presented in Figure 3(a).
The problem.js file was extended by the lines 12–23. Note that the source-code can be downloaded
from the homepage mentioned in the introduction.
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function arguments description and examples

IA.add interval I, interval J Returns the sum of two intervals I and J .
IA.add([-1,2],[3,4]) = [2,6]

IA.sub interval I, interval J Returns the difference of two intervals I and J .
IA.sub([-1,2],[3,4]) = [-5,-1]

IA.mult interval I, interval J Returns the product of two intervals I and J .
IA.mult([-1,2],[3,4]) = [-4,8]

IA.div interval I, interval J Returns the quotient of two intervals I and J . If zero
is an element of J , the function returns [0, 0].
IA.div([-1,4],[2,4]) = [-0.5,2]

IA.div([-1,4],[-1,1]) = [0,0]

IA.add scalar scalar c, interval I Returns the sum of a scalar c and an interval I.
IA.add scalar(-1,[2,3]) = [1,2]

IA.mult scalar scalar c, interval I Returns the product of a scalar c and an interval I.
IA.mult scalar(-1,[2,3]) = [-3,-2]

IA.sq interval I Returns the square of an interval I.
IA.sq([2,3]) = [4,9]

IA.sq([-3,2]) = [0,9]

IA.sqrt interval I Returns the square root of an interval I. Negative val-
ues in I are limited from below by zero.
IA.sqrt([4,9]) = [2,3]

IA.sqrt([-7,4]) = [0,2]

IA.pow interval I, integer p Returns the power p of an interval I where p is assumed
as positive integer.
IA.pow([-1,2],3) = [-1,8]

IA.min interval I, interval J Returns the minimum of two intervals I and J .
IA.min([1,4],[2,3]) = [1,3]

IA.max interval I, interval J Returns the maximum of two intervals I and J .
IA.max([1,4],[2,3]) = [2,4]

IA.abs interval I Returns the absolute value of an interval I.
IA.abs([-1,4]) = [0,4]

IA.exp interval I Returns the exponential of an interval I.
IA.exp([0,2]) = [1,7.389]

IA.log interval I Returns the natural logarithm of an interval I. If zero
is an element of I, the function returns [0, 0].
IA.log([1,7.389]) = [0,2]

IA.sin interval I Returns the sine of an interval I.
IA.sin([0,3.141]) = [0,1]

IA.cos interval I Returns the cosine of an interval I.
IA.cos([0,3.142]) = [-1,1]

IA.atan interval I Returns the arctangent of an interval I.
IA.atan([-2,2]) = [-1.107,1.107]

Table 1. List of all functions included in the interval arithmetic package (IA).
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function arguments description and examples

PV.set size scalars xL, xR, yL, yR, r Sets the plotting area to [xL, xR]× [yL, yR] with a
ratio of r = |y : x|. This is a mandatory function.

PV.set size(0, 10, 0, 4, 0.4);

PV.head string S Draws the headline / caption of the plotting sur-
face. This is a mandatory function.

PV.head("Problem Visualization");

PV.dot scalars x, y Draws a simple black dot at (x, y).

PV.dot(5.0, 2.0);

PV.disc scalars x, y, r, color C Draws a disc with center (x, y), radius r, and color
C.

PV.disc(9, 2, 0.5, ’#0000FF’);

PV.circle scalars x, y, r, color C Draws a circumference / circle line with center
(x, y), radius r, and color C.

PV.circle(2, 2, 1.8, ’#FF0000’);

PV.line scalars x1, y1, x2, y2, color C Draws a line from (x1, y1) to (x2, y2) with color C.

PV.line(4, 0.5, 4, 3.5, ’#999999’);

PV.rect scalars x, y, w, h, color C Draws a rectangle starting at (x, y) with width w,
height h, and color C.

PV.rect(6, 0.5, 3.5, 1, ’#00A000’);

PV.text scalars x, y string S Draws a text box with text S, centered at (x, y).

PV.text(2, 2, "center of circle");

Table 2. List of all functions included in the problem visualization package (PV). Figure 5 illustrates
the problem visualization applying all the examples given in this table.

3.4 Problem visualization

Finally, the problem visualization package (PV) can be used for the illustration of the prob-
lem instance. To this end, a canvas element with id canvas P is needed in the index.html

file as well as the function called plot problem in the problem.js file. The argument y of
the function plot problem, see line 39 in Figure 6(b), is the current best-known solution
x∗ throughout the algorithm.

Table 2 collects all functions which are included in the problem visualization package, see
also Figure 5 and Subsection 3.5. Note that the two functions set size and head are
mandatory.

3.5 Example problem

As a second example problem, we consider the two-dimensional center problem. Here, we
make use of the interval arithmetic package as well as the problem visualization package.

Assuming s given demand points A1, . . . , As on the plane, we would like to find a circle
or disc with smallest radius which contains all these demand points leading to a two-
dimensional problem, see Hamacher (1995) and references therein:
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Figure 5. Problem visualization applying all the examples given in Table 2.

Given some demand points A1, . . . , As ∈ R2, the center problem is
to find the smallest disc with center X = (x1, x2) ∈ R2 containing
these points. Thus, the problem is to minimize the objective function

f(x1, x2) = f(X) = max
k=1,...,s

‖Ak −X‖2

where ‖ · ‖2 is the Euclidean norm.

Figure 6 shows the source-code we used to solve the problem. The index.html file is the
same as outlined in the examples before. The problem.js file contains the problem-specific
source-code:

( 1 ) The mandatory parameters are defined in lines 1–3.

( 2 ) The init problem function is called once before the algorithm is running. Here, some
demand points are randomly distributed in the unit square, see lines 7–11.

( 3 ) Lines 15–23 contain the source-code for the objective function.

( 4 ) Lines 27–35 contain the source-code for the calculation of the lower bounds. Here, we
used the natural interval bounding operation, see Scholz (2012a), making use of the
interval arithmetic package (IA).

( 5 ) Finally, lines 39–47 are to illustrate to problem making use of the problem visualiza-
tion package (PV).

4 Example problems

Facility location problems are to find one or more new locations which, for instance, mini-
mize the sum of some distances to existing demand points. Hence, we obtain a continuous
objective function with only a few variables and, therefore, geometric branch-and-bound
methods are popular solution techniques.

In this section we summarize some facility location problems as well as geometric problems
which were solved by applying the suggested JavaScript branch-and-bound tool, see

www.mehr-davon.de/gbb/
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(a) Source-code of the index.html file.

(b) Source-code of the problem.js file.

Figure 6. Two-dimensional example of the JavaScript branch-and-bound tool: The center problem is
solved in X = [0, 1]× [0, 1] with an absolute accuracy of ε = 10−6. The source-code can be downloaded
from the homepage mentioned in the introduction.
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4.1 The Weber problem

The two-dimensional Weber problem is to find a location for a new facility on the plane
which minimizes the weighted sum of Euclidean distances to a given set of demand points.
If some weights are positive and others are negative, global optimization techniques are
helpful solution algorithms, see for example Schöbel and Scholz (2010a) or Drezner et al.
(2001) and references therein.

Given s demand points A1, . . . , As ∈ R2 with weights w1, . . . , ws ∈ R,
the Weber problem is to find a new facility X = (x1, x2) ∈ R2 such
that the new facility is close to demand points with positive weights
and far away from demand points with negative weights. Thus, the
problem is to minimize the objective function

f(x1, x2) = f(X) =

s∑
k=1

wk · ‖Ak −X‖2

where ‖ · ‖2 is the Euclidean norm.

We applied the JavaScript branch-and-bound tool using the lower bounds as presented in
Schöbel and Scholz (2010a).

4.2 The 2-median problem

The 2-median problem or the multisource Weber problem is to find two new facilities
on the Euclidean plane taking some given demand points into account, see Drezner (1984),
Chen et al. (1998), or Schöbel and Scholz (2010a). Hence, we are dealing with a four-
dimensional problem which can be formulated as follows.

Given s demand points A1, . . . , As ∈ R2, the 2-median problem is
to find two new facilities

X1 = (x1, x2) ∈ R2 and X2 = (x3, x4) ∈ R2

such that every demand point is served by its nearest new facility.
Hence, we want to minimize the objective function

f(x1, x2, x3, x4) = f(X1, X2) =

s∑
k=1

min{‖Ak −X1‖2, ‖Ak −X2‖2}

where ‖ · ‖2 is the Euclidean norm.

We applied the JavaScript branch-and-bound tool using the lower bounds as presented in
Schöbel and Scholz (2010a).
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4.3 The 3-median problem

The 3-median problem is an extension of the 2-median problem to three new facilities,
see Drezner (1984), Chen et al. (1998), or Schöbel and Scholz (2010a). Thus, we are dealing
with the following six-dimensional problem.

Given s demand points A1, . . . , As ∈ R2, the 3-median problem is
to find three new facilities

X1 = (x1, x2), X2 = (x3, x4), and X3 = (x5, x6)

such that every demand point is served by its nearest new facility.
Hence, we want to minimize the objective function

f(x1, x2, x3, x4, x5, x6) = f(X1, X2, X3) =
s∑

k=1

(
min

j=1,2,3
‖Ak −Xj‖2

)
where ‖ · ‖2 is the Euclidean norm.

We applied the JavaScript branch-and-bound tool again using the lower bounds as presented
in Schöbel and Scholz (2010a).

4.4 The median circle problem

The median circle problem is to locate a circle so as to minimize the sum of distances
between the circumference and some given demand points on the plane, see Brimberg et al.
(2009) or Schöbel and Scholz (2010a) for more details. Since every circle can be defined by
its center and radius, we have a three-dimensional problem.

Given s demand points A1, . . . , As ∈ R2, the median circle problem
is to find the center X = (x1, x2) and radius x3 ≥ 0 of a circle such
that the sum of distances between the circumference and the demand
points is minimized. Hence, we find the objective function

f(x1, x2, x3) = f(X,x3) =

s∑
k=1

∣∣∣‖Ak −X‖2 − x3

∣∣∣
where ‖ · ‖2 is the Euclidean norm.

We applied the JavaScript branch-and-bound tool using the lower bounds as presented in
Schöbel and Scholz (2010a).

4.5 The circle detection problem

Global optimization techniques can also be used in image processing to detect imperfect
pictured shapes such as lines, circles, and ellipses. We here present the circle detection
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problem although in the same manner it is also possible to detect other shapes such as
lines or ellipses. Note that one first has to detect edges in a given image before the objective
function can be formulated as follows, see Breuel (2003a), Breuel (2003b), or Scholz (2012a).

Assume a set of points A1, . . . , As ∈ R2, for example derived from
an edge detection algorithm of an image. Than the circle detection
problem is to find the center X = (x1, x2) and radius x3 ≥ 0 of a circle
such that it fits to the given points. This problem can be modeled by
a minimization problem with objective function

f(x1, x2, x3) = −
s∑

k=1

exp

(
−1

δ
· (‖Ak −X‖2 − x3)2

)
+ C · x3

where ‖ · ‖2 is the Euclidean norm and δ > 0, C ≥ 0 are some
regularization parameters.

We applied the JavaScript branch-and-bound tool using the lower bounds as presented in
Scholz (2012a).

4.6 The rigid body transformation problem

The two-dimensional rigid body transformation problem is to align two sets of points
in the Euclidean space for which correspondence is known, see Eggert et al. (1997) and
references therein. The transformation is defined by a rotation matrix and a translation
vector.

Assume two sets of points

A1, . . . , As ∈ R2 and B1, . . . , Bs ∈ R2

in such a way that Ak is assigned to Bk for k = 1, . . . , s. Than the
two-dimensional least squares rigid body transformation problem
is to minimize the objective function

f(x1, x2, x3) =

s∑
k=1

∥∥∥∥( cos(x1) sin(x1)
− sin(x1) cos(x1)

)
·Ak +

(
x2

x3

)
− Bk

∥∥∥∥2

2

where ‖ · ‖22 is the squared Euclidean norm.

We applied the JavaScript branch-and-bound tool using the general bounding operation
of second order, see Scholz (2012a). Note that the same procedure can also be applied to
higher dimensional problems.
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5 Conclusions

Geometric branch-and-bound methods are well-known solution techniques in deterministic
global optimization. Our aim was to provide some software such that global optimization
problems can be solved as simple as possible by the use of a geometric branch-and-bound
algorithm. To this end, we suggested a JavaScript tool which includes the branch-and-
bound algorithm as well as an interval arithmetic package and a problem visualization
package. Hence, one basically only has to implement the objective function and a rule for
the calculation of the lower bounds if one wants to solve a global optimization problem.
For the calculation of the required bounds, one might use the interval arithmetic package,
see for example Subsection 3.5.

Although the JavaScript code can be used very easily and no further software is needed,
the disadvantage is the run time since JavaScript code needs to be interpreted at any time
the code is running. On the other hand, in Section 4 several examples from the field of
location theory are given which can be solved efficiently for small and medium-sized problem
instances. Furthermore, the code of the JavaScript tool as well as all example problems can
be downloaded from the homepage mentioned in the introduction.
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